A Polymorphic Dynamic Network Loading Model

نویسندگان

  • Yu Nie
  • Jingtao Ma
  • H. Michael Zhang
چکیده

A polymorphic dynamic network loading (PDNL) model is developed and discretized to integrate a variety of macroscopic traffic flow and node models. The polymorphism, realized through a general node-link interface and proper discretization, offers several prominent advantages. First of all, PDNL allows road facilities in the same network to be represented by different traffic flow models based on the tradeoff of efficiency and realism and/or the characteristics of the targeted problem. Second, new macroscopic link/node models can be easily plugged into the framework and compared against existing ones. Third, PDNL decouples links and nodes in network loading, and thus opens the door to parallel computing. Finally, PDNL keeps track of individual vehicular quanta of arbitrary size, which makes it possible to replicate analytical loading results as closely as desired. PDNL, thus, offers an ideal platform for studying both analytical dynamic traffic assignment problems of different kinds and macroscopic traffic simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Five Parameter Viscoelastic Model Under Dynamic Loading

The purpose of this paper is to analysis the viscoelastic models under dynamic loading. A five-parameter model is chosen for study exhibits elastic, viscous, and retarded elastic response to shearing stress. The viscoelastic specimen is chosen which closely approximates the actual behavior of a polymer. The module of elasticity and viscosity coefficients are assumed to be space dependent i.e. f...

متن کامل

Modelling a JVM for polymorphic bytecode

In standard compilation of Java-like languages, the bytecode generated for a given source depends on both the source itself and the compilation environment. This latter dependency poses some unnecessary restrictions on which execution environments can be used to run the code. When using polymorphic bytecode, a binary depends only on its source and can be dynamically adapted to run on diverse en...

متن کامل

Prediction of Deformation of Circular Plates Subjected to Impulsive Loading Using GMDH-type Neural Network

In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...

متن کامل

Solving Multiple Fuels Dynamic Environmental/Economic Dispatch Problem and Incentive Based Demand Response Considering Spinning Reserve Requirements

In this paper a new integrated model of the dynamic environmental/economic dispatch (DEED) problem and emergency demand response program (EDRP) has been presented by which their interactions are investigated. DEED schedules the online generators power output over the whole dispatch period subject to some practical constraints so that the fuel costs and emission are optimized simultaneously. EDR...

متن کامل

A Calculus for Dynamic Loading

We present the load-calculus, used to model dynamic loading, and prove it sound. The calculus extends the polymorphic λ-calculus with a load primitive that dynamically loads terms that are closed, with respect to values. The calculus is meant to approximate the process of dynamic loading in TAL/Load [4], an version of Typed Assembly Language [7] extending with dynamic linking. To model the key ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp.-Aided Civil and Infrastruct. Engineering

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2008